Share
Share
Background & aims
Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism plays a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect bile duct injury in BA.
Methods
We studied zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of bile duct injury in the zebrafish experimental BA model, with subsequent validation.
Results
Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone.
Conclusion
Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.
Arbor Research Collaborative for Health (Arbor Research) is pleased to announce its successful award of a position in a new subgroup within the General Services Administration (GSA) Schedule Contract focusing on Program Evaluation Services. The establishment of this subgroup will streamline the federal procurement process. Program evaluation is a crucial aspect of federal initiatives, providing […]
Arbor Research will engage with stakeholders across the health care system to identify, develop, and pilot web-based competency training for health care professionals in best practices for quality and safety. November 6, 2023 – Ann Arbor, MI – Arbor Research Collaborative for Health is excited to be collaborating with Reveal Global Consulting in the initiation […]
Individuals with BSEP deficiency with one p.E297G or p.D482G mutation and one PPTM have a similarly severe disease course and low responsiveness to siEHC as those with two PPTMs.
Featuring new scientific work with internationally-known speakers, expert panels, early career investigators, and audience participation.